РОССИЙСКАЯ ФЕДЕРАЦИЯ

Вичугский муниципальный район Ивановская область Муниципальное казенное общеобразовательное учреждение «Новописцовская средняя общеобразовательная школа»

«Рассмотрено» на заседании ШМО учителей математики и физики Протокол № 6 от 30 08 2021 г. Руководитель ШМО учителей математики и физики:

«Принято» на заседании Педагогического совета от <u>JP PS</u> 2021 г. Протокол № / от <u>JP P</u>2021 г. «Утверждаю» директог МКОУ «Новописцовская школа» Н.Е.Голунова Приказ от 31 ог 2021 т № 6 г

Рабочая программа по физике

для 7 - 9 классов (уровень основного общего образования)

Составитель: Сатышева Ирина Владимировна учитель физики СЗД

1. Пояснительная записка

Рабочая программа по физике для основной школы разработана на основе программы основного общего образования «Физика. 7 – 9 классы» авторов УМК А.В. Перышкина, Н.Ф. Филонович, Е.М. Гутник (М.: Дрофа, 2016), составленной на основе Фундаментального ядра содержания общего образования и Требований к результатам освоения основной образовательной программы основного общего образования, представленных в федеральном государственном образовательном Стандарте основного общего образования второго поколения.

Цели изучения физики в основной школе следующие:

- усвоение учащимися смысла основных понятий и законов физики, взаимосвязи между ними;
- формирование системы научных знаний о природе, ее фундаментальных законах для построения представления о физической картине мира;
- систематизация знаний о многообразии объектов и явлений природы, о закономерностях процессов и о законах физики для осознания возможности разумного использования достижений науки в дальнейшем развитии цивилизации;
- формирование убежденности в познаваемости окружающего мира и достоверности научных методов его изучения;
- организация экологического мышления и ценностного отношения к природе;
- развитие познавательных интересов и творческих способностей учащихся, а также интереса к расширению и углублению физических знаний и выбора физики как профильного предмета.

Достижение целей обеспечивается решением следующих задач:

- знакомство учащихся с методом научного познания и методами исследования объектов и явлений природы;
- приобретение учащимися знаний о механических, тепловых, электромагнитных и квантовых явлениях, физических величинах, характеризующих эти явления;
- формирование у учащихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни;
- овладение учащимися такими общенаучными понятиями, как природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки;
- понимание учащимися отличий научных данных от непроверенной информации, ценности науки для удовлетворения бытовых, производственных и культурных потребностей человека.

2. Общая характеристика учебного предмета

Школьный курс физики — системообразующий для естественно-научных предметов, поскольку физические законы, лежащие в основе мироздания, являются основой содержания курсов химии, биологии, географии и астрономии. Физика вооружает школьников научным методом познания, позволяющим получать объективные знания об окружающем мире.

В 7 и 8 классах происходит знакомство с физическими явлениями, методом научного познания, формирование основных физических понятий, приобретение умений измерять физические величины, проводить лабораторный эксперимент по заданной схеме. В 9 классе начинается изучение основных физических законов, лабораторные работы становятся более сложными, школьники учатся планировать эксперимент самостоятельно.

Данный курс является одним из звеньев в формировании естественно-научных знаний учащихся наряду с химией, биологией, географией. Принцип построения курса - объединение изучаемых фактов вокруг общих физических идей. Это позволило рассматривать отдельные явления и законы, как частные случаи более общих положений науки, что способствует пониманию материала, развитию логического мышления, а не простому заучиванию фактов.

Изучение строения вещества в 7 классе создает представления о познаваемости явлений, их обусловленности, о возможности непрерывного углубления и пополнения знаний: молекула -

атом; строение атома - электрон. Далее эти знания используются при изучении массы, плотности, давления газа, закона Паскаля, объяснении изменения атмосферного давления.

В 8 классе продолжается использование знаний о молекулах при изучении тепловых явлений. Сведения по электронной теории вводятся в разделе «Электрические явления». Далее изучаются электромагнитные и световые явления.

Курс физики 9 класса расширяет и систематизирует знания по физике, полученные учащимися в 7 и 8 классах, поднимая их на уровень законов.

Новым в содержании курса 9 класса является включение астрофизического материала в соответствии с требованиями ФГОС.

3. Место предмета в учебном плане

В учебном плане МКОУ «Новописцовская средняя школа» на изучение физики отводится 238 часов: в 7 и 8 классах - по 68 часов (из расчёта 2 часа в неделю, 34 учебных недели), в 9 классе - 102 часа (из расчёта 3 часа в неделю, 34 учебных недели).

Класс	7	8	9
Количество часов в неделю	2	2	3
Итого	68	68	102

4. Личностные, метапредметные, предметные результаты освоения предмета.

Личностными результатами обучения физике в основной школе являются:

- сформированность познавательных интересов на основе развития интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;
- формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметными результатами обучения физике в основной школе являются:

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
- развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;

- освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Общими предметными результатами изучения курса являются:

- умение пользоваться методами научного исследования явлений природы: проводить наблюдения, планировать и выполнять эксперименты, обрабатывать измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, использовать физические модели, выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез.

Предметные результаты по темам представлены в содержании.

5. Содержание курса

7 класс (68 часов, 2 часа в неделю)

Введение (4ч)

Физика - наука о природе. Физические явления. Физические свойства тел. Наблюдение и описание физических явлений. Измерение физических величин: длины, времени, температуры. Физические приборы. Международная система единиц. Точность и погрешность измерений. Физика и техника.

Фронтальная лабораторная работа:

1. Определение цены деления измерительного прибора.

Предметные результаты:

- понимание физических терминов: тело, вещество, материя.
- умение проводить наблюдения физических явлений; измерять физические величины: расстояние, промежуток времени, температуру; определять цену деления шкалы прибора с учётом погрешности измерения;
- понимание роли ученых нашей страны в развитие современной физики и влияние на технический и социальный прогресс.

Первоначальные сведения о строении вещества (6 ч)

Строение вещества. Опыты, доказывающие атомное строение вещества. Тепловое движение атомов и молекул. Броуновское движение. Диффузия в газах, жидкостях и твердых телах. Взаимодействие частиц вещества. Агрегатные состояния вещества. Модели строения твердых тел, жидкостей и газов. Объяснение свойств газов, жидкостей и твердых тел на основе молекулярно-кинетических представлений.

Фронтальная лабораторная работа:

2. Определение размеров малых тел.

Предметные результаты:

- понимание и способность объяснять физические явления: диффузия, большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел;
- владение экспериментальными методами исследования при определении размеров малых тел:
- понимание причин броуновского движения, смачивания и несмачивания тел; различия в молекулярном строении твердых тел, жидкостей и газов;
- умение пользоваться СИ и переводить единицы измерения физических величин в кратные и дольные единицы;
- умение использовать полученные знания, умения и навыки в повседневной жизни (быт, экология, охрана окружающей среды).

Взаимодействие тел (23 ч)

Механическое движение. Траектория. Путь. Равномерное и неравномерное движение. Скорость. Графики зависимости пути и модуля скорости от времени движения. Инерция. Инертность тел. Взаимодействие тел. Масса тела. Измерение массы тела. Плотность вещества. Сила. Сила тяжести. Сила упругости. Закон Гука. Вес тела. Связь между силой тяжести и массой тела. Сила тяжести на других планетах. Сложение двух сил, направленных по одной прямой. Равнодействующая двух сил. Сила трения. Физическая природа небесных тел Солнечной системы.

Фронтальные лабораторная работа:

- 3. Измерение массы тела на рычажных весах.
- 4. Измерение объема тела.
- 5. Определение плотности твердого тела.
- 6. Градуирование пружины и измерение сил динамометром.
- 7. Измерение силы трения с помощью динамометра

Предметные результаты:

- понимание и способность объяснять физические явления: механическое -движение, равномерное и неравномерное движение, инерция, всемирное тяготение;
- умение измерять скорость, массу, силу, вес, силу трения скольжения, силу трения качения, объем, плотность, тела равнодействующую двух сил, действующих на тело в одну и в противоположные стороны;
- владение экспериментальными методами исследования в зависимости: пройденного пути от времени, удлинения пружины от приложенной силы, силы тяжести тела от его массы, силы трения скольжения от площади соприкосновения тел и силы, прижимающей тело к поверхности (нормального давления);
- понимание смысла основных физических законов: закон всемирного тяготения, закон Гука;
- владение способами выполнения расчетов при нахождении: скорости (средней скорости), пути, времени, силы тяжести, веса тела, плотности тела, объема, массы, силы упругости, равнодействующей двух сил, направленных по одной прямой;
- умение находить связь между физическими величинами: силой тяжести и массой тела, скорости со временем и путем, плотности тела с его массой и объемом, силой тяжести и весом тела;
- умение переводить физические величины из несистемных в СИ и наоборот
- понимание принципов действия динамометра, весов, встречающихся в повседневной жизни, и способов обеспечения безопасности при их использовании;
- умение использовать полученные знания, умения и навыки в повседневной жизни (быт, экология, охрана окружающей среды).

Давление твердых тел, жидкостей и газов (21 ч)

Давление. Давление твердых тел. Давление газа. Объяснение давления газа на основе молекулярно-кинетических представлений. Передача давления газами и жидкостями. Закон Паскаля. Сообщающиеся сосуды. Атмосферное давление. Методы измерения атмосферного давления. Барометр, манометр, поршневой жидкостный насос. Закон Архимеда. Условия плавания тел. Воздухоплавание.

Фронтальные лабораторные работы:

- 1. Определение выталкивающей силы, действующей на погруженное в жидкость тело.
- 2. Выяснение условий плавания тела в жидкости.

Предметные результаты:

- понимание и способность объяснить физические явления: атмосферное давление, давление жидкостей, газов и твердых тел, плавание тел, воздухоплавание, расположение уровня жидкости в сообщающихся сосудах, существование воздушной оболочки Землю, способы уменьшения и увеличения давления;

- умение измерять: атмосферное давление, давление жидкости на дно и стенки сосуда, силу Архимеда;
- владение экспериментальными методами исследования зависимости: силы Архимеда от объема вытесненной воды, условий плавания тела в жидкости от действия силы тяжести и силы Архимеда;
- понимание смысла основных физических законов и умение применять их на практике: закон Паскаля, закон Архимеда;
- понимание принципов действия барометра-анероида, манометра, насоса, гидравлического пресса, с которыми человек встречается в повседневной жизни и способов обеспечения безопасности при их использовании;
- владение способами выполнения расчетов для нахождения давления, давление жидкости на дно и стенки сосуда, силы Архимеда в соответствие с поставленной задачи на основании использования законов физики;
- умение использовать полученные знания, умения и навыки в повседневной жизни (экология, быт, охрана окружающей среды).

Работа и мощность. Энергия (13 ч)

Механическая работа. Мощность. Простые механизмы. Момент силы. Условия равновесия рычага. «Золотое правило» механики. Виды равновесия. Коэффициент полезного действия (КПД). Энергия. Потенциальная и кинетическая энергия. Превращение энергии.

Фронтальные лабораторные работы:

- 1. Выяснение условия равновесия рычага.
- 2. Определение КПД при подъеме тела по наклонной плоскости.

Предметные результаты:

- понимание и способность объяснять физические явления: равновесие тел превращение одного вида механической энергии другой;
- умение измерять: механическую работу, мощность тела, плечо силы, момент силы. КПД, потенциальную и кинетическую энергию;
- владение экспериментальными методами исследования при определении соотношения сил и плеч, для равновесия рычага;
- понимание смысла основного физического закона: закон сохранения энергии
- понимание принципов действия рычага, блока, наклонной плоскости и способов обеспечения безопасности при их использовании;
- владение способами выполнения расчетов для нахождения: механической работы, мощности, условия равновесия сил на рычаге, момента силы, КПД, кинетической и потенциальной энергии;
- умение использовать полученные знания, умения и навыки в повседневной жизни (экология, быт, охрана окружающей среды).

Итоговая контрольная работа (1 ч)

8 класс (68 ч, 2 ч в неделю)

Тепловые явления (23 ч)

Тепловое движение. Тепловое равновесие. Температура. Внутренняя энергия. Работа и теплопередача. Теплопроводность. Конвекция. Излучение. Количество теплоты. Удельная теплоемкость. Расчет количества теплоты при теплообмене. Закон сохранения и превращения энергии в механических и тепловых процессах. Плавление и отвердевание кристаллических тел. Удельная теплота плавления. Испарение и конденсация. Кипение. Влажность воздуха. Удельная теплота парообразования. Объяснение изменения агрегатного состояния вещества на основе молекулярно-кинетических представлений. Преобразование энергии в тепловых машинах.

Двигатель внутреннего сгорания. Паровая турбина. КПД теплового двигателя. Экологические проблемы использования тепловых машин.

Фронтальные лабораторные работы:

- 1. Сравнение количеств теплоты при смешивании воды разной температуры.
- 2. Измерение удельной теплоемкости твердого тела.
- 3. Измерение влажности воздуха.

Предметными результатами при изучении темы являются:

- понимание и способность объяснять физические явления: конвекция, излучение, теплопроводность, изменение внутренней энергии тела в результате теплопередачи или работы внешних сил, испарение (конденсация) и плавление (отвердевание) вещества, охлаждение жидкости при испарении, конденсация, кипение, выпадение росы;
- умение измерять: температуру, количество теплоты, удельную теплоемкость вещества, удельную теплоту плавления вещества, удельная теплоту парообразования, влажность воздуха;
- владение экспериментальными методами исследования ависимости относительной влажности воздуха от давления водяного пара, содержащегося в воздухе при данной температуре и давления насыщенного водяного пара: определения удельной теплоемкости вещества;
- понимание принципов действия конденсационного и волосного гигрометров психрометра, двигателя внутреннего сгорания, паровой турбины с которыми человек постоянно встречается в повседневной жизни, и способов обеспечения безопасности при их использовании;
- понимание смысла закона сохранения и превращения энергии в механических и тепловых процессах и умение применять его на практике;
- овладение разнообразными способами выполнения расчетов для нахождения удельной теплоемкости, количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении, удельной теплоты сгорания, удельной теплоты плавления, влажности воздуха, удельной теплоты парообразования и конденсации, КПД теплового двигателя;
- умение использовать полученные знания, умения и навыки в повседневной жизни (экология, быт, охрана окружающей среды).

Электрические явления (29 ч)

Электризация тел. Два рода электрических зарядов. Взаимодействие заряженных тел. Проводники, диэлектрики и полупроводники. Электрическое поле. Закон сохранения электрического заряда. Делимость электрического заряда. Электрон. Строение атома. Электрический ток. Действие электрического поля на электрические заряды. Источники тока. Электрическая цепь. Сила тока. Электрическое напряжение. Электрическое сопротивление. Закон Ома для участка цепи. Последовательное и параллельное соединение проводников. Работа и мощность электрического тока. Закон Джоуля—Ленца. Конденсатор. Правила безопасности при работе с электроприборами.

Фронтальные лабораторные работы:

- 4. Сборка электрической цепи и измерение силы тока в ее различных участках.
- 5. Измерение напряжения на различных участках электрической цепи.
- 6. Регулирование силы тока реостатом.
- 7. Измерение сопротивления проводника при помощи амперметра и вольтметра.
- 8. Измерение мощности и работы тока в электрической лампе.

Предметными результатами при изучении темы являются:

- понимание и способность объяснять физические явления: электризация тел, нагревание проводников электрическим током, электрический ток в металлах, электрические явления в позиции строения атома, действия электрического тока;
- умение измерять силу электрического тока, электрическое напряжение, электрический заряд, электрическое сопротивление;

- владение экспериментальными методами исследования зависимости силы тока на участке цепи от электрического напряжения, электрического сопротивления проводника от его длины, площади поперечного сечения и материала;
- понимание смысла закона сохранения электрического заряда, закона Ома для участка цепи.
 Закона Джоуля-Ленца;
- понимание принципа действия электроскопа, электрометра, гальванического элемента, аккумулятора, фонарика, реостата, конденсатора, лампы накаливания, с которыми человек сталкивается в повседневной жизни, и способов обеспечения безопасности при их использовании;
- владение различными способами выполнения расчетов для нахождения силы тока, напряжения, сопротивления при параллельном и последовательном соединении проводников, удельного сопротивления работы и мощности электрического тока, количества теплоты, выделяемого проводником с током, емкости конденсатора, работы электрического поля конденсатора, энергии конденсатора;
- умение использовать полученные знания, умения и навыки в повседневной жизни (экология, быт, охрана окружающей среды).

Электромагнитные явления (5 ч)

Опыт Эрстеда. Магнитное поле. Магнитное поле прямого тока. Магнитное поле катушки с током. Постоянные магниты. Магнитное поле постоянных магнитов. Магнитное поле Земли. Взаимодействие магнитов. Действие магнитного поля на проводник с током. Электрический двигатель.

Фронтальные лабораторные работы:

- 9. Сборка электромагнита и испытание его действия.
- 10. Изучение электрического двигателя постоянного тока (на модели).

Предметными результатами изучения темы являются:

- понимание и способность объяснять физические явления: намагниченность железа и стали, взаимодействие магнитов, взаимодействие проводника с током и магнитной стрелки, действие магнитного поля на проводник с током;
- владение экспериментальными методами исследования зависимости магнитного действия катушки от силы тока в цепи;
- умение использовать полученные знания, умения и навыки в повседневной жизни (экология, быт, охрана окружающей среды).

Световые явления (10 ч)

Источники света. Прямолинейное распространение света. Видимое движение светил. Отражение света. Закон отражения света. Плоское зеркало. Преломление света. Закон преломления света. Линзы. Фокусное расстояние линзы. Оптическая сила линзы. Изображения, даваемые линзой. Глаз как оптическая система. Оптические приборы.

Фронтальная лабораторная работа:

11. Получение изображения при помощи линзы.

Предметными результатами изучения темы являются:

- понимание и способность объяснять физические явления: прямолинейное распространения света, образование тени и полутени, отражение и преломление света;
- умение измерять фокусное расстояние собирающей линзы, оптическую силу линзы;
- владение экспериментальными методами исследования зависимости изображения от расположения лампы на различных расстояниях от линзы, угла отражения от угла падения света на зеркало;
- понимание смысла основных физических законов и умение применять их на практике: закон отражения и преломления света, закон прямолинейного распространения света;

- различать фокус линзы, мнимый фокус и фокусное расстояние линзы, оптическую силу линзы и оптическую ось линзы, собирающую и рассеивающую линзы, изображения, даваемые собирающей и рассеивающей линзой;
- умение использовать полученные знания, умения и навыки в повседневной жизни (экология, быт, охрана окружающей среды).

Итоговая контрольная работа(1 ч)

9 класс (102 ч, 3 ч в неделю)

Законы взимодействия и движения тел(34 ч)

Материальная точка. Система отсчета. Перемещение. Скорость прямолинейного равномерного движения. Прямолинейное равноускоренное движение: мгновенная скорость, ускорение, перемещение. Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении. Относительность механического движения. Геоцентрическая и гелиоцентрическая системы мира. Инерциальная система отсчета. Законы Ньютона. Свободное падение. Невесомость. Закон всемирного тяготения. [Искусственные спутники Земли.] (В квадратные скобки заключен материал, на являющийся обязательным для изучения) Импульс. Закон сохранения импульса. Реактивное движение.

Фронтальные лабораторные работы:

- 1. Исследование равноускоренного движения без начальной скорости.
- 2. Измерение ускорения свободного падения.

Предметными результатамиизучения темы являются:

- понимание и способность описывать и объяснять физические явления: поступательное движение (назвать отличительный признак), смена дня и ночи на Земле, свободное падение тел. невесомость, движение по окружности с постоянной по модулю скоростью;
- знание и способность давать определения /описания физических понятий: относительность движения (перечислить, в чём проявляется), геоцентрическая и гелиоцентрическая системы мира; [первая космическая скорость], реактивное движение; физических моделей: материальная точка, система отсчёта, физических величин: перемещение, скорость равномерного прямолинейного движения, мгновенная скорость и ускорение при равноускоренном прямолинейном движении, скорость и центростремительное ускорение при равномерном движении тела по окружности, импульс;
- понимание смысла основных физических законов: закон Ньютона, закон всемирного тяготения, закон сохранения импульса, закон сохранения энергии и умение применять их на практике;
- умение приводить примеры технических устройств и живых организмов, в основе перемещения которых лежит принцип реактивного движения. Знание и умение объяснять устройство и действие космических ракет-носителей;
- умение измерять: мгновенную скорость и ускорение при равноускоренном прямолинейном движении, центростремительное ускорение при равномерном движении по окружности;
- умение использовать полученные знания, умения и навыки в повседневной жизни (быт, экология, охрана окружающей среды).

Механические колебания и волны. Звук (16 ч)

Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательная система. Маятник. Амплитуда, период, частота колебаний. [Гармонические колебания]. Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания. Резонанс. Распространение колебаний в упругих средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью ее распространения и периодом (частотой). Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Эхо. Звуковой резонанс. [Интерференция звука].

Фронтальная лабораторная работа:

3. Исследование зависимости периода и частоты свободных колебаний маятника от длины его нити.

Предметными результатами изучения темы являются:

- понимание и способность описывать и объяснять физические явления: колебания нитяного (математического) и пружинного маятников, резонанс (в т. ч. звуковой), механические волны, длина волны, отражение звука, эхо;
- знание и способность давать определения физических понятий: свободные колебания, колебательная система, маятник, затухающие колебания, вынужденные колебания, звук и условия его распространения; физических величин: амплитуда, период, частота колебаний, собственная частота колебательной системы, высота, [тембр], громкость звука, скорость звука; физических моделей: [гармонические колебания], математический маятник;
- владение экспериментальными методами исследования зависимости периода и частоты колебаний маятника от длины его нити.

Электромагнитное поле (26 ч)

Однородное и неоднородное магнитное поле. Направление тока и направление линий его магнитного поля. Правило буравчика. Обнаружение магнитного поля. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции. Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние. Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Влияние электромагнитных излучений на живые организмы. Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения. [Интерференция света.] Электромагнитная природа света. Преломление света. Показатель преломления. Дисперсия света. Цвета тел. [Спектрограф и спектроскоп.] Типы оптических спектров. [Спектральный анализ.] Поглощение и испускание света атомами. Происхождение линейчатых спектров.

Фронтальные лабораторные работы:

- 4. Изучение явления электромагнитной индукции.
- 5. Наблюдение сплошного и линейчатых спектров испускания

Предметными результатами изучения темы являются:

- понимание и способность описывать и объяснять физические явления/процессы: электромагнитная индукция, самоиндукция, преломление света, дисперсия света, поглощение и испускание света атомами, возникновение линейчатых спектров излучения и поглошения:
- умение давать определения / описание физических понятий: магнитное поле, линии магнитной индукции; однородное и неоднородное магнитное поле, магнитный поток, переменный электрический ток, электромагнитное поле, электромагнитные волны, электромагнитные колебания, радиосвязь, видимый свет; физических величин: магнитная индукция, индуктивность, период, частота и амплитуда электромагнитных колебаний, показатели преломления света;
- знание формулировок, понимание смысла и умение применять закон преломления света и правило Ленца, квантовых постулатов Бора;
- знание назначения, устройства и принципа действия технических устройств: электромеханический индукционный генератор переменного тока, трансформатор, колебательный контур; детектор, спектроскоп, спектрограф;
- [понимание сути метода спектрального анализа и его возможностей].

Строение атома и атомного ядра (19 ч)

Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета- и гаммаизлучения. Опыты Резерфорда. Ядерная модель атома. Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел при ядерных реакциях. Экспериментальные методы исследования частиц. Протонно-нейтронная модель ядра. Физический смысл зарядового и массового чисел. Изотопы. Правила смещения для альфа- и бета-распада при ядерных реакциях. Энергия связи частиц в ядре. Деление ядер урана. Цепная реакция. Ядерная энергетика. Экологические проблемы работы атомных электростанций. Дозиметрия. Период полураспада. Закон радиоактивного распада. Влияние радиоактивных излучений на живые организмы. Термоядерная реакция. Источники энергии Солнца и звезд.

Фронтальные лабораторные работы:

- 6. Измерение естественного радиационного фона дозиметром.
- 7. Изучение деления ядра атома урана по фотографии треков.
- 8. Оценка периода полураспада находящихся в воздухе продуктов распада газа радона.
- 9. Изучение треков заряженных частиц по готовым фотографиям.

Предметными результатами изучения темы являются:

- понимание и способность описывать и объяснять физические явления: радиоактивность, ионизирующее излучение;
- знание и способность давать определения/описания физических понятий: радиоактивность, альфа-, бета- и гамма-частицы; физических моделей: модели строения атомов, предложенные Д. Д. Томсоном и Э. Резерфордом; протонно-нейтронная модель атомного ядра, модель процесса деления атома урана; физических величин: поглощенная доза излучения, коэффициент качества, эквивалентная доза, период полураспада;
- умение приводить примеры и объяснять устройство и принцип действия технических устройств и установок: счетчик Гейгера, камера Вильсона, пузырьковая камера, ядерный реактор на медленных нейтронах;
- умение измерять: мощность дозы радиоактивного излучения бытовым дозиметром;
- знание формулировок, понимание смысла и умение применять: закон сохранения массового числа, закон сохранения заряда, закон радиоактивного распада, правило смещения;
- владение экспериментальными методами исследования в процессе изучения зависимости мощности излучения продуктов распада радона от времени;
- понимание сути экспериментальных методов исследования частиц;
- использование полученных знаний в повседневной жизни (быт, экология, охрана окружающей среды, техника безопасности и др.).

Строение и эволюция Вселенной (5 ч)

Состав, строение и происхождение Солнечной системы. Планеты и малые тела Солнечной системы. Строение, излучение и эволюция Солнца и звезд. Строение и эволюция Вселенной.

Предметными результатами изучения темы являются:

- представление о составе, строении, происхождении и возрасте Солнечной системы;
- умение применять физические законы для объяснения движения планет Солнечной системы,
- знать, что существенными параметрами, отличающими звёзды от планет, являются их массы и источники энергии (термоядерные реакции в недрах звёзд и радиоактивные в недрах планет);
- сравнивать физические и орбитальные параметры планет земной группы с соответствующими параметрами планет-гигантов и находить в них общее и различное;
- объяснять суть эффекта X. Доплера; формулировать и объяснять суть закона Э. Хаббла, знать, что этот закон явился экспериментальным подтверждением модели нестационарной Вселенной, открытой А. А. Фридманом.

Итоговая контрольная работа (2 ч)

6. Структура дисциплины

7 класс.

Полу годие	Содержание программы	Количест во часов	Количество лабораторных работ	Количество контрольных работ и зачетов
1	Введение	4	1	-
	Первоначальные сведения о строении вещества	6	1	1
	Взаимодействие тел	23	5	1
2	Давление твердых тел, жидкостей и газов.	21	2	1
	Работа и мощность. Энергия.	13	2	1
	Резерв учителя	1	-	1
Итого		68	11	5

8 класс.

Полу годие	Содержание программы	Количест во часов	Количество лабораторных работ	Количество контрольных работ и зачетов
1	Тепловые явления	23	4	2
	Электрические явления	9	-	-
2	Электрические явления	20	5	2
	Электромагнитные явления	5	2	1
	Световые явления	10	1	1
	Резерв часов	1	-	1
Итого		68	12	7

9 класс.

Полу годие	Содержание программы	Количест во часов	Количество лабораторных работ	Количество контрольных работ и зачетов
1	Законы взаимодействия и движения тел	34	2	2
	Механические колебания и волны. Звук	6		-
2	Механические колебания и волны. Звук	10	1	1
	Электромагнитное поле	26	2	1
	Строение атома и атомного ядра	19	3	1
	Строение и эволюция Вселенной	5	-	-
	Резерв	2		1
Итого		102	8	6

2.3 Лабораторные работы 7 класс.

No	No	Наименование лабораторных работ	
ЛР	раздела		
1	2	3	4
1	1	Определение цены деления измерительного прибора	1
2	2	Измерение размеров малых тел	1
3	3	Измерение массы тела на рычажных весах	1
4	3	Измерение объема тела	1
5	3	Определение плотности твердого тела	1
6	3	Градуирование пружины и измерение сил динамометром	1
7	3	Измерение силы трения скольжения и силы трения качения с помощью динамометра	1
8	4	Определение выталкивающей силы, действующей на погружённое в жидкость тело	1
9	4	Выяснение условий плавания тела в жидкости	1
10	5	Выяснение условия равновесия рычага	1
11	5	Определение КПД при подъеме тела по наклонной плоскости	1

8 класс.

№	No	Наименование лабораторных работ	
ЛР	раздела		
1	2	3	
1	1	Исследование изменения со временем температуры остывающей воды	1
2	1	Сравнение количеств теплоты при смешивании воды различной температуры	1
3	1	Измерение удельной теплоемкости твердого тела	1
4	1	Измерение влажности воздуха	1
5	2	Сборка электрической цепи и измерение силы тока в ее различных участках	1
6	2	Измерение напряжения на различных участках электрической цепи	1
7	2	Регулирование силы тока реостатом	1
8	2	Измерение сопротивления при помощи вольтметра и амперметра	1

9	2	Измерение мощности и работы тока в электрической лампе	1
10	3	Сборка электромагнита и испытание его действия	1
11	3	Изучение электрического двигателя постоянного тока	1
12	4	Получение изображения при помощи тонкой линзы	1

9 класс.

№ ЛР	№	Наименование лабораторных работ	
JIP	раздела		
1	2	3	4
1	1	Исследование равноускоренного движения без начальной скорости	1
2	1	Измерение ускорения свободного падения	1
3	2	Исследование зависимости периода и частоты свободных колебаний нитяного маятника от длины нити	1
4	3	Изучение явления электромагнитной индукции	1
5	3	Наблюдение сплошного и линейчатого спектров испускания	1
6	4	Измерение естественного радиационного фона дозиметром	1
7	4	Изучение деления ядра атома урана по фотографии треков	1
8	4	Изучение треков заряженных частиц по готовым фотографиям	1

7. Описание учебно-методического и материально-технического обеспечения образовательного процесса

1 Печатные пособия

- 1. А.В. Перышкин, Н.В. Филонович, Е.М. Гутник. Программа основного общего образования. Физика. 7-9 классы./ Рабочие программы. Физика 7-9 класс.сост. Е.Н. Тихонова.- М.: Дрофа, 2015
- 2. Федеральный государственный образовательный стандарт основного общего образования (утвержденный приказом Министерства образования и науки Российской Федерации от 17.12. 2010 г. № 1897)
- 3. А.В. Перышкин «Физика 7 класс»: учебник для общеобразовательных учреждений. М.: Дрофа, 2016
- 4. А.В. Перышкин «Физика 8 класс»: учебник для общеобразовательных учреждений. М.: Дрофа, 2017
- 5. А.В. Перышкин, Е.М. Гутник «Физика 9класс»: учебник для общеобразовательных учреждений. М.: Дрофа, 2018
- 6. Лукашик В.И. Сборник задач по физике для 7-9 классов общеобразовательных учреждений М.: Просвещение, 2011

Образовательные диски

Школьный физический эксперимент (7-11 класс)

Материально-техническое обеспечение

Комплект демонстрационного и лабораторного оборудования по (механике, молекулярной физике, электродинамике, оптике, атомной и ядерной физике) в соответствии с перечнем учебного оборудования по физике для основной школы.

Учебно-практическое и учебно-лабораторное оборудование

7 класс:

Свинцовые цилиндры.

Модели кристаллических решеток.

Демонстрационные динамометры.

Шар Паскаля.

Психрометр

Сообщающиеся сосуды.

Шар для взвешивания воздуха.

Барометр-анероид

Манометры жидкостный и металлический.

Демонстрационные блоки и рычаги.

Маятник Максвелла

Комплект 7.1: мензурки, стаканы, колбы.

Комплект 7.2: линейки, иголки.

Комплект 7.3: весы с разновесами, набор тел для взвешивания.

Комплект 7.4: динамометры лабораторные, штативы.

Комплект 7.5: деревянные бруски, набор грузов.

Комплект 7.6: рычаги, набор грузов, линейки, динамометры.

Комплект 7.7: деревянные доски, линейки, деревянные бруски, штативы, динамометры.

8 класс:

Прибор для демонстрации действия излучения.

Модель двигателя внутреннего сгорания.

Модель паровой турбины.

Набор по электризации тел.

Электрометр, электроскоп.

Электрофорная машина.

Демонстрационный гальванометр.

Магнитная стрелка на подставке.

Демонстрационные амперметр и вольтметр.

Набор по магнитным полям.

Набор по оптике.

Комплект 8.1: калориметр, мензурка, термометр, стакан

Комплект 8.2: стакан, калориметр, весы, гири, термометр.

Комплект 8.3: батарейка 4,5в, лампа, амперметр, провода, ключ.

Комплект 8.4: батарейка 4,5в, лампа, вольтметр, резисторы, провода, ключ.

Комплект 8.5: батарейка 4,5в, реостат, амперметр, провода, ключ.

Комплект 8.6: батарейка 4,5в, проводник, амперметр, провода, ключ, вольтметр.

Комплект 8.7: батарейка 4,5в, часы, амперметр, провода, ключ, вольтметр, лампа.

Комплект 8.8: батарейка 4,5в, провода, ключ, реостат, компас, электромагнит.

Комплект 8.9: модель электродвигателя, батарейка 3,6в, провода, ключ

Комплект 8.10: собирающая линза, экран, лампа, измерительная лента.

9 класс:

Прибор для демонстрации взаимодействия тел

Набор по механике

Набор полосовых магнитов.

Набор по волновой оптике.

Комплект 9.1: желоб, металлический цилиндр, шарик, измерительная лента, часы.

Комплект 9.2: штатив с муфтой и лапкой, шарик на нити длиной 120 см, часы.

Комплект 9.3: миллиамперметр, катушка-моток, дугообразный магнит, источник питания, катушка с железным сердечником, реостат, ключ, провода, модель генератора электрического тока.

Комплект 9.4: фотографии треков заряженных частиц

Натуральные объекты

Вода горячая и холодная

Соль

Крупа в ассортименте

Железные опилки

Парафиновые свечи

Демонстрационные пособия

Глобус Луны

Теллурий

Паровая турбина

Модель двигателя внутреннего сгорания

Маятник Максвелла

Электрофорная машина

Модели полупроводниковых приборов

Барометр-анероид

Камертон

Конденсатор переменной емкости

Электрометр

Жидкостный манометр

Психрометр

8. Требования к обучающимся

Механические явления

Выпускник научится:

- распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и равноускоренное прямолинейное движение, свободное падение тел, невесомость, равномерное движение по окружности, инерция, взаимодействие тел, передача давления твёрдыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твёрдых тел, колебательное движение, резонанс, волновое движение;
- описывать изученные свойства тел и механические явления, используя физические величины: путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения, амплитуда, период и частота колебаний, длина волны и скорость её распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы

- измерения, находить формулы, связывающие данную физическую величину с другими величинами;
- анализировать свойства тел, механические явления и процессы, используя физические законы и принципы: закон сохранения энергии, закон всемирного тяготения, равнодействующая сила, І, ІІ и ІІІ законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;
- различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчёта;
- решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, амплитуда, период и частота колебаний, длина волны и скорость её распространения): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

- использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- приводить примеры практического использования физических знаний о механических явлениях и физических законах; использования возобновляемых источников энергии; экологических последствий исследования космического пространства;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (закон Гука, закон Архимеда и др.);
- приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний по механике с использованием математического аппарата, оценивать реальность полученного значения физической величины.

Тепловые явления Выпускник научится:

- распознавать тепловые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объёма тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твёрдых тел; тепловое равновесие, испарение,конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи;
- описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;
- анализировать свойства тел, тепловые явления и процессы, используя закон сохранения энергии; различать словесную формулировку закона и его математическое выражение;
- различать основные признаки моделей строения газов, жидкостей и твёрдых тел;

- решать задачи, используя закон сохранения энергии в тепловых процессах, формулы, связывающие физические величины (количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

- использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания (ДВС), тепловых и гидроэлектростанций;
- приводить примеры практического использования физических знаний о тепловых явлениях:
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;
- приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.

Электрические и магнитные явления Выпускник научится:

- распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, нагревание проводника с током, взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током, прямолинейное распространение света, отражение и преломление света, дисперсия света;
- описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное расстояние и оптическая сила линзы; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами;
- анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля—Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение;
- решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля—Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное расстояние и оптическая сила линзы, формулы расчёта электрического сопротивления при последовательном и параллельном соединении проводников); на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

- использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами,

- для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- приводить примеры практического использования физических знаний о электромагнитных явлениях;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля—Ленца и др.);
- приёмам построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.

Квантовые явления

Выпускник научится:

- распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, возникновение линейчатого спектра излучения;
- описывать изученные квантовые явления, используя физические величины: скорость электромагнитных волн, длина волны и частота света, период полураспада; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом;
- различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;
- приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, линейчатых спектров.

Выпускник получит возможность научиться:

- использовать полученные знания в повседневной жизни при обращении с приборами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- соотносить энергию связи атомных ядер с дефектом массы;
- приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра;
- понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.

Элементы астрономии

Выпускник научится:

- различать основные признаки суточного вращения звёздного неба, движения Луны, Солнца и планет относительно звёзд;
- понимать различия между гелиоцентрической и геоцентрической системами мира.

Выпускник получит возможность научиться:

- указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звёздного неба при наблюдениях звёздного неба;
- различать основные характеристики звёзд (размер, цвет, температура), соотносить цвет звезды с её температурой;
- различать гипотезы о происхождении Солнечной системы.

9. Система оценивания учащихся.

1. Оценка письменных контрольных работ обучающихся по физике. Ответ оценивается отметкой «5», если:

- работа выполнена полностью;
- в логических рассуждениях и обосновании решения нет пробелов и ошибок;
- в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

- работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
- допущены одна ошибка или есть два три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

- работа выполнена правильно на две трети;
- допущено более одной грубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трёх недочётов, при наличии четырёх-пяти недочетов.

Отметка «2» ставится, если:

- выполнено менее двух третей работы;
- допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

2.Оценка лабораторных работ по физике.

Отметка «5» ставится, если учащийся:

- полностью выполнил работу с соблюдением всей необходимой последовательности проведения опытов и измерений;
 - самостоятельно и рационально монтирует необходимое оборудование;
- все опыты проводит в условиях, обеспечивающих получение правильных результатов и выводов;
 - соблюдает требования правил безопасного труда;
- в отчёте правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления; правильно выполняет анализ погрешностей измерения.

Отметка «4» ставится, если учащийся:

• выполнил работу в соответствии с требованиями к оценке «5», но допустил два-три недочета или не более одной негрубой ошибки и одного недочета.

Отметка «3» ставится, если учащийся:

- выполнил работу не полностью, но объем выполненной части таков, что позволяет получить правильные результаты и выводы;
 - в ходе проведения опыта и измерений были допущены ошибки.

Отметка «2» ставится, если учащийся:

- выполнил работу не полностью и объем выполненной части не позволяет сделать правильные результаты и выводы;
 - неправильно проводил наблюдения.

Во всех случаях оценка снижается, если ученик не соблюдает требования правил безопасного труда.

3.Оценка устных ответов обучающихся по физике

Ответ оценивается отметкой «5», если ученик:

- показал верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий;
- дал точное определение и истолкование основных понятий, законов и теорий; правильно определяет физические величины, их единицы, способы измерения;
 - правильно выполнил построение графиков, чертежей, схем;
- показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
- продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;
 - отвечал самостоятельно, без наводящих вопросов учителя;
- возможны одна две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если: удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

- в изложении допущены небольшие пробелы, не исказившее содержание ответа;
- допущены один два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
- допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «З» ставится в следующих случаях:

- неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала;
- имелись затруднения или допущены ошибки в определении физической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
- ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
- при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

- не раскрыто основное содержание учебного материала;
- обнаружено незнание учеником большей или наиболее важной части учебного материала;
- допущены ошибки в определении понятий, при использовании физической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

9.1 Перечень ошибок

Грубые ошибки

- 1. Незнание определений основных понятий, законов, правил, основных положений теории, формул, общепринятых символов обозначения физических величин, единиц их измерения.
- 2. Неумение выделять главное в ответе.

- 3. Неумение применять знания для решения задач и объяснения физических явлений; неправильно сформулированные вопросы задачи или неверные объяснения хода её решения; незнание приёмов решения задач, аналогичных ранее решённым в классе; ошибки, показывающие неправильное понимание условия задачи или неправильное истолкование решения.
- 4. Неумение читать и строить графики, принципиальные схемы.
- 5. Неумение подготовить к работе установку или лабораторное оборудование, провести опыт, необходимые расчёты или использовать полученные данные для выводов.
- 6. Небрежное отношение к лабораторному оборудованию и измерительным приборам.
- 7. Неумение определить показание измерительного прибора.
- 8. Нарушение требований правил безопасного труда при выполнении эксперимента.

Негрубые ошибки

- 1. Неточности формулировок, определений, понятий, законов, теорий, вызванные неполнотой охвата основных признаков определяемого понятия; вызванные несоблюдением условий проведения эксперимента или измерений.
- 2. Ошибки в условных обозначениях на принципиальных схемах; неточности чертежей, графиков, схем.
- 3. Пропуск или неточное описание наименований единиц физических величин, сокращение слов в выводах.
- 4. Нерациональный выбор хода решения задачи.

Недочёты

- 1. Нерациональные записи при вычислениях, нерациональные приёмы вычислений, преобразований при решении задач.
- 2. Арифметические ошибки в вычислениях, если эти ошибки грубо искажают реальность полученного результата.
 - 3. Отдельные погрешности в формулировке вопроса или ответа.
 - 4. Небрежное выполнение записей, чертежей, схем, графиков.